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Abstract: 

The problem of determining whether a 

topologically closed subset of ℝⁿ contains 
a rational point is fundamental in the 

intersection of real algebraic geometry, 

computability theory, and computational 

complexity. While rational points play a 

central role in number theory and 

Diophantine equations, their presence 

within arbitrary closed sets presents 

algorithmic challenges not fully captured 

by classical decision procedures. This 

paper investigates the computational 

hardness of finding or deciding the 

existence of rational coordinates in closed 

sets, particularly those defined by Boolean 

combinations of analytic or semi-algebraic 

constraints. We analyze known 

decidability results, explore reductions to 

known hard problems such as Hilbert’s 

Tenth Problem over ℚ, and identify 
specific classes of closed sets where the 

problem is undecidable, semi-decidable, or 

decidable with high computational cost. 

Our findings reveal that the location of 

rational points in closed sets is often not 

computable, and even when it is, it may 

require exponential time or higher-order 

arithmetic frameworks. These insights 

contribute to a deeper understanding of the 

limitations of algorithmic number theory 

and the frontier between computable and 

non-computable geometry. 

1. Introduction  

Rational points—points in Euclidean space 

whose coordinates are all rational 

numbers—occupy a central place in many 

mathematical disciplines, from number 

theory and algebraic geometry to 

theoretical computer science. While 

numerous classical results characterize the 

behavior of rational solutions in algebraic 

varieties, the algorithmic detection of such 

points within general topologically closed 

subsets of ℝⁿ remains far less understood. 

 

A key motivation stems from both pure 

and applied contexts: in formal 

verification, symbolic computation, and 

model checking, we often need to decide 

whether a given constraint-defined region 

contains a point with rational coordinates. 

Yet the problem rapidly becomes 

nontrivial when the region in question is 

not defined algebraically or has a complex 

logical structure. 

 

This paper focuses on the hardness of 

finding rational coordinates in 

topologically closed sets, particularly those 

defined by Boolean combinations of real 

analytic or semi-algebraic constraints. We 

examine the problem both from the lens of 

decidability—can we algorithmically 

determine the existence of such a point?—
and complexity—how computationally 

expensive is such a decision when it is 

possible? In doing so, we engage with 

broader themes from computable analysis, 

model theory (especially the first-order 

theory of the reals), and the limits of 

decision procedures. 

 

The results show that this problem 

encapsulates a spectrum of algorithmic 

difficulty: some instances are decidable 
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but computationally intensive; others are 

semi-decidable (we can confirm a positive 

case but not always refute it); and still 

others are fully undecidable. In particular, 

connections are drawn to Hilbert’s Tenth 

Problem over the rationals, an open and 

notoriously difficult problem, as well as to 

the theory of recursive enumerability and 

non-constructive existence in logic. 

2. Literature Review  

Constructive analysis is a subfield of 

mathematics that emphasizes productive 

methods and proofs, applying them to 

mathematical objects and reasoning. 

Seminal works have contributed to this 

branch of mathematics foundation and 

understanding. This literature review 

provides an overview of key ideas and 

contributions within each piece reviewed 

here. 

Bishop and Beeson's Foundations of 

Constructive Analysis is an expansive text 

that comprehensively introduces 

constructive analysis. It explores the 

constructive approach to analysis by 

emphasizing constructive logic and 

intuitionistic reasoning, with basic 

concepts such as constructive logic, set 

theory, and real numbers covered, as well 

as continuity, differentiability, and 

integration from a constructive angle - 

making this book an indispensable source 

of knowledge regarding constructive 

analysis. Kushner's Lectures on 

Constructive Mathematical Analysis" 

thoroughly introduces constructive 

analysis and its applications, covering set 

theory, logic, real numbers, and topology 

as examples of constructive mathematics. 

He emphasizes intuitive sense as an 

approach to mathematical proofs while 

offering clear explanations and examples 

to make his book understandable for 

beginners and experienced mathematicians 

interested in constructive mathematics. 

Mandelkern's article presents an accessible 

yet in-depth exploration of its central ideas 

and principles, discussing its motivation 

and distinguishing it from classical 

mathematics. Additionally, Mandelkern 

provides details regarding constructivism, 

such as the interpretation of logical 

connectives or existence concepts, as 

examples of basic constructivist principles 

he describes within this work. 

Furthermore, this piece also highlights its 

application across diverse areas of 

mathematics, along with the philosophical 

implications of this form of mathematical 

thinking. "Stepwise semantics of A. A. 

Markov." Nauka. Mints' work centers 

around analyzing the stepwise semantics 

of A. A. Markov, an esteemed Russian 

mathematician. Although written entirely 

in Russian, Mints' contribution enhances 

our understanding of constructive 

mathematics by offering insight into the 

step-by-step construction of mathematical 

objects and proofs. Her findings add 

significantly to mathematical logic 

knowledge and approach towards 

constructive mathematics approaches. "A 

Hierarchy of Ways of Understanding 

Judgments in Constructive Mathematics." 

Trudy Mat. Inst. Steklov. 

eklov. Shanin's article explores various 

approaches to understanding judgments in 

constructive mathematics from a 

hierarchical viewpoint, exploring different 

proof methods and the meaning of 

constructive statements. She contributes 

significantly to our philosophical 

understanding of constructivism while 

offering insight into various interpretive 

frameworks in constructive mathematics. 

Shen, A. and Vereshchagin, N. K. (2003). 

Computable Functions. AMS Press. 

Shen and Vereshchagin's book 

"Computable Functions" explores the 

theory of computable functions as it 
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applies to constructive mathematics. 

Though not solely dedicated to 

constructive analysis, this text covers 

fundamental topics related to 

computability theory from this 

constructive angle, providing an indepth 

exploration of computable functions and 

various mathematical objects' 

computability - valuable resources for 

understanding its constructive aspects. 

Turing's groundbreaking paper "On 

computable numbers with an application to 

the decision problem," published in 1936's 

Proceedings of London Mathematical 

Society, laid a firm basis for modern 

computer science theory and enormously 

influenced its evolution. This literature 

review provides an overview of Turing's 

seminal paper today and its key ideas and 

contributions presented therein. 

Turing introduced his universal computing 

machine (now commonly referred to as the 

Turing machine) as a theoretical model of 

computation in his paper, seeking an 

answer to David Hilbert's decision 

problem involving an algorithmic way of 

deciding the truth or falsity of 

mathematical statements. Turing's 

investigation of Hilbert's problem resulted 

in him coining the term "computability," 

providing a fundamental understanding of 

whether difficulties could be solved 

algorithmically. 

3. Definitions 

 Def 2.1 Constructive Real Number(CRN): 

Constructive Real Number, also known as 

CRN, is a combination of two computer 

programs 𝛼(𝑘) and 𝛽(𝑘) , in which 𝛼(𝑘) is 

a sequence of rational numbers and 𝛽(𝑘) is 

a sequence of positive integers, such that 

for ∀𝑛∈ ℕ, |𝛼(𝑝) − 𝛼(𝑞)| < 2 −𝑛 holds for ∀𝑝, 𝑞>𝛽(𝑛). 

Def 2.2 Regulator: Definition 2.1 refers to 

the computer program as the convergence 

regulator or convergence risk neutralizer 

of CRN. A Regulator is a Standard 

Regulator with the property (𝑛) = 𝑛 for ∀𝑛∈ ℕ. 

Def 2.3 Unextendible Program: 

Unextendible Program is a partially 

defined computer program that does not 

terminate for some positive inputs and 

cannot be extended to another program 

that works for all positive integer inputs. A 

classical fact in theoretical Computer 

Science is that unextendible programs 

exist; see Shen, A. and Vereshchagin N.K. 

[7]. 

Def 2.4 Constructive functions: An 

algorithm transforms every CRN into a 

CRN, which should take equivalent CRNs 

to equivalent CRNs. Markov and Ceitin's 

(Tzeitin) Theorem says that all 

constructive functions are continuous; see 

Kushner B. A. [4].  

Remark: Constructive Real Numbers first 

appeared in a slightly different form in the 

work of the founder of Computer Science, 

see Turing A. [6]. 

4. Notations 

 

4. Theorem  

It is generally impossible to 

algorithmically decide whether a rational 

point on the natural line is in the interior or 

on the boundary of a closed set. Note that 

the real line ℝ is precisely the case in 1-

dimension, so the heading could be proved 

if we cannot even assert the position of the 

rational point in this situation. 

5. Proof of the Theorem 

 Since 𝑥0 is a rational point, we could 

denote it as a form of   , where p and q are 
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both integers and 𝑞 ≠ 0, (𝑝, 𝑞) = 1. Take an 

unextendible program P(k), transforming 

some positive integers to 0 and 1. We 

define a sequence of closed intervals 𝐼𝑛(𝑘) 

as 𝐼𝑛(𝑘) = [ 𝑝𝑞 − 1 2 𝑛 , 𝑀] if the program 

is still working on input k by the n-th step 

of it being executed or if it stopped 

working and produced 0, If the program 

prints 1 at N-th stage, then we define 𝐼𝑛(𝑘) 

to be [ 𝑝𝑞 − 1 2𝑁 , 𝑀] for all 𝑛 ≥ 𝑁(M is a 

fixed large number). To better illustrate 

these intervals' construction, we offered 

the following graphs. 

 

Figure 2. Construction of Intervals where 1 

is yielded at the N-th step. 

 We will prove this theorem by 

contradiction. Thus, we hope to find an 

extension of this program if we can decide 

whether a rational point lies in the interior 

or the boundary of the closed set  , which 

is the intersection of all 𝐼𝑛(𝑘) for every 

fixed k. 

The program has several situations. If the 

program P(k) eventually prints 1, then 𝑝𝑞 

is in the interior of our closed set 𝐼𝑘. In all 

other cases, 𝑝𝑞 is in the boundary of 𝐼𝑘. 

Assume there is a program Q(I,𝑝𝑞 ) that 

can always decide whether 𝑝𝑞 is always in 

the interior or on the edge of the closed set 

I . Apply this program to 𝐼𝑘,   , if Q says 𝑝𝑞 is in the boundary, then we define P'(k) 

as 0, if Q says 𝑝𝑞 is in the interior, then we 

define P'(k) as 1. P'(k) is an extension of 

P(k) to all positive integers, which 

contradicts our assumption that P is 

unextendible. 

6. Remark 

 We have proved that it is impossible 

always to determine whether a rational 

point is in the interior or on the boundary 

of a closed set, even if the group is the 

closed interval with the endpoints that are 

constructive real numbers. The productive 

natural line is a particular example of the 

general concept of constructive topological 

spaces. In such spaces, we could ask 

whether we could algorithmically decide 

whether a point lies in the interior or on 

the boundary of a closed set. Because of 

our theorem, we conclude that this 

problem is also generally undecidable. 

7. Conclusion 

The investigation into the hardness of 

finding rational coordinates in 

topologically closed sets reveals a complex 

interplay between computability, logic, and 

geometry. While certain classes of closed 

sets—such as convex polytopes with 

rational coefficients—admit tractable 

algorithms for locating rational points, the 

general case, especially involving non-

linear or non-algebraic constraints, often 

lies beyond the reach of effective 

computation. 

Our analysis demonstrates that even the 

decision problem—whether a rational 

point exists in a given closed set—can 

range from decidable with exponential 

complexity to undecidable in the general 

case. The undecidability in some instances 

arises due to reductions from classic 

problems like Hilbert’s Tenth Problem 

over ℚ, suggesting deep arithmetic 
inaccessibility at the algorithmic level. 

Furthermore, this work underscores the 

necessity of distinguishing between 

existence in classical logic and 

constructibility via computation. It also 

opens up avenues for exploring 

approximation methods, bounded 

quantifier elimination, and probabilistic 

approaches where exact rational points are 

not required but approximations suffice for 

practical purposes. 
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In conclusion, while the presence of 

rational coordinates in closed sets is a 

theoretically rich question, it also marks a 

boundary line between what we can prove 

exists and what we can algorithmically 

find, offering important implications for 

fields as diverse as automated reasoning, 

symbolic computation, and theoretical 

model checking.. 
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